Contact Us   客
   服
   中
   心










商城 > IP 商城

    
CAN 2.0 & CAN FD Bus Controller Core 参考报价 12.000 K Gates 无资料 无资料  
The CAN protocol uses a multi-master bus configuration for the transfer of frames be- tween nodes of the network and manages error handling with no burden on the host processor. The core enables the user to set up economic and reliable links between vari- ous components. It appears as a memory-mapped I/O device to the host processor, which accesses the CAN core to control the transmission or reception of frames. The CAN core is easy to use and integrate, featuring programmable interrupts, data and baud rates; a configurable number of independently programmable acceptance filters; and a generic processor interface or optionally an AMBA APB, or AHB-Lite interface. It imple- ments a flexible buffering scheme, allowing fine-tuning of the core size to satisfy the requirements of each specific application   概述
Octal SPI Master/Slave Controller 参考报价 4.641 K Gates 500 MHz 无资料  
Designed to work with a wide variety of SPI bus variants, the core supports run-time control of several SPI protocol parameters. For example, the SPI frame width can be 1 to 4 bytes, the most significant bit position in a frame, serial clock phase and polarity are all software- programmable. In master mode the core can control up to 32 slaves. A software controllable clock generator derives the serial clock for master mode, by dividing the frequency of a clock line dedicated for that purpose   概述
USB 2.0 ON-THE-GO CONTROLLER 参考报价 75.000 K Gates 200 MHz 无资料  
This is a universal serial bus (USB) 2.0 On-The-Go (OTG) Controller, which can play dual-role, as a host or a device controller. When it acts as a host, it contains a USB host controller to support all speed transactions. 概述
USB 3.1 GEN1 DUAL-ROLE CONTROLLER 参考报价 无资料 30 MHz 无资料  
This is an USB 3.1 Gen1 dual-role controller, which is compliant to USB 2.0/USB 3.1 Gen1 specifications. The controller can act as a standard host or peripheral for easy system implementation. The role can be selected via static pin selection. 概述
Clock divider by 3 100 点 52.000 Gates 370 MHz 130 nm  
There are 2 types of circuits in digital logic world. One is combinational, and the other is sequential. The difference between them is that the latter one has storage (memory) while the former one does not. Thus, in contrast to combinational circuits, whose output depends only on the current values of its inputs, the output of sequential circuits depends not only on the current values of its inputs but also on the past values of them. Based on the characteristic of sequential circuits, we can build counters. In addition, we can further build clock dividers with the counters we designed 概述
Asynchronous I2C Slave 999 点 578.000 Gates 100 MHz 130 nm  
Unlike Synchronous type I2C slave design need clock to work. This Asynchronous type don’t need base clock . It is very power saving in some application     Application :    - Power manager IC   - Sensor IC   - Software wakeup requirement system 概述
SPI slave in mode 3 1000 点 256.000 Gates 285 MHz 130 nm  
The Serial Peripheral Interface (SPI) bus, established by Motorola, is a synchronous serial data link. It operates in master/slave and full duplex styles. That is, when a master device initiates a transaction and communicates with a certain slave device, they exchange data bit-by-bit. Furthermore, the single master communication is applied to the SPI bus. Thus, there is always a single master device (with one or more slave devices) on it.The SPI bus contains 4 wires, with each named SCK, MOSI, MISO and SS_n respectively. You may also find alternative naming conventions elsewhere. The following table lists their functions and directions:The typical SPI bus architecture is designed as follows:When the SPI master device wants to communicate with a certain slave device, it asserts the SS_n line of that slave device, and then exchange data using the MOSI and MISO lines based on the toggling SCK line.With clock polarity (CPOL) and clock phase (CPHA) set to different values, the SPI bus can operate in 4 modes. These modes are listed in the following table, where provide means that the communicating master and slave devices provide data on the MOSI and MISO lines respectively on the other hand, capture means that the communicating master and slave devices capture data on the MISO and MOSI lines respectively: 概述
SPI slave in mode 0 1000 点 274.000 Gates 243 MHz 130 nm  
The Serial Peripheral Interface (SPI) bus, established by Motorola, is a synchronous serial data link. It operates in master/slave and full duplex styles. That is, when a master device initiates a transaction and communicates with a certain slave device, they exchange data bit-by-bit. Furthermore, the single master communication is applied to the SPI bus. Thus, there is always a single master device (with one or more slave devices) on it. The SPI bus contains 4 wires, with each named SCK, MOSI, MISO and SS_n respectively. You may also find alternative naming conventions elsewhere. The following table lists their functions and directions: The typical SPI bus architecture is designed as follows:   When the SPI master device wants to communicate with a certain slave device, it asserts the SS_n line of that slave device, and then exchange data using the MOSI and MISO lines based on the toggling SCK line. With clock polarity (CPOL) and clock phase (CPHA) set to different values, the SPI bus can operate in 4 modes. These modes are listed in the following table, where provide means that the communicating master and slave devices provide data on the MOSI and MISO lines respectively on the other hand, capture means that the communicating master and slave devices capture data on the MISO and MOSI lines respectively:   概述
SPI slave in mode 1 1000 点 276.000 Gates 285 MHz 130 nm  
The Serial Peripheral Interface (SPI) bus, established by Motorola, is a synchronous serial data link. It operates in master/slave and full duplex styles. That is, when a master device initiates a transaction and communicates with a certain slave device, they exchange data bit-by-bit. Furthermore, the single master communication is applied to the SPI bus. Thus, there is always a single master device (with one or more slave devices) on it. The SPI bus contains 4 wires, with each named SCK, MOSI, MISO and SS_n respectively. You may also find alternative naming conventions elsewhere. The following table lists their functions and directions: The typical SPI bus architecture is designed as follows: When the SPI master device wants to communicate with a certain slave device, it asserts the SS_n line of that slave device, and then exchange data using the MOSI and MISO lines based on the toggling SCK line. With clock polarity (CPOL) and clock phase (CPHA) set to different values, the SPI bus can operate in 4 modes. These modes are listed in the following table, where provide means that the communicating master and slave devices provide data on the MOSI and MISO lines respectively on the other hand, capture means that the communicating master and slave devices capture data on the MISO and MOSI lines respectively:   概述
SPI slave in mode 2 1000 点 254.000 Gates 192 MHz 130 nm  
The Serial Peripheral Interface (SPI) bus, established by Motorola, is a synchronous serial data link. It operates in master/slave and full duplex styles. That is, when a master device initiates a transaction and communicates with a certain slave device, they exchange data bit-by-bit. Furthermore, the single master communication is applied to the SPI bus. Thus, there is always a single master device (with one or more slave devices) on it. The SPI bus contains 4 wires, with each named SCK, MOSI, MISO and SS_n respectively. You may also find alternative naming conventions elsewhere. The following table lists their functions and directions: The typical SPI bus architecture is designed as follows: When the SPI master device wants to communicate with a certain slave device, it asserts the SS_n line of that slave device, and then exchange data using the MOSI and MISO lines based on the toggling SCK line. With clock polarity (CPOL) and clock phase (CPHA) set to different values, the SPI bus can operate in 4 modes. These modes are listed in the following table, where provide means that the communicating master and slave devices provide data on the MOSI and MISO lines respectively on the other hand, capture means that the communicating master and slave devices capture data on the MISO and MOSI lines respectively:   概述
微IP 价格 逻辑闸数 工作频率 工艺   评价

 4  5  6  7  8  9  10  11  12  13