Contact Us   客
   服
   中
   心










商城 > IP 商城

    
影音开发平台 参考报价 无资料 无资料 无资料  
Single Chip Solution 32-bit RISC MCU SPI/UART/I2C/GPIO Video Process Engine Video DAC/Audio DAC USB 2.0 Video Scaler DDR4 Easy Integrated Customer’s Logic ​Application DVR and POS DVR ATM machine surveillance Home stay monitoring Multiple channel IP camera 概述
H.264 Encoder IP Core 参考报价 无资料 150 MHz 无资料  
This H.264 Encoder IP core has been developed to be the highest throughput standards compliant hardware H.264 video compressor.  The IP offers two encoder variants to meet the different targets of features.   The IP include 2 mode. H264E-I: H.264 encoder compliant with CAVLC 4:4:4 Intra Profile (all frames are keyframes)​         The IP core is smaller but yields less compression. It does not require external memory. H264E-P: H.264 encoder compliant with High 4:4:4 Predictive Profile:   The IP core is larger but offers a significantly better compression. Both share the same outstanding processing speed of more than 5.2 pixels encoded per cycle. The data interfaces in the H.264 Encoder IP Core use the AXI industry standard.  The Master I/O data interfaces use an AXI3 bus, forward compatible with AXI4 interconnects. 概述
Binary PSK Demodulator 参考报价 无资料 200 MHz 无资料  
IP is a Binary-PSK demodulator based on a multiply-filter-divide architecture.   The design is robust and flexible and allows easy connectivity to an external  ADC. As the the carrier recovery circuit is open-loop, there is no feedback path or loop-filter to configure.  This results in an extremely simple circuit with a very fast carrier acquisition time.  The only requirement is that the user set the desired symbol period and a suitable threshold level for the bit decisions at the symbol decoder.  The other design parameters including carrier   frequency,   symbol   rate   and   sampling   frequency   should   be specified by the user before delivery of the IP Core 1 . The input data samples are 16-bit signed (2's complement) values that are synchronous with the system clock.  Input values are sampled on the rising edge of clk when en is high.   Application Robust, low bandwidth RF applications for small FPGA devices SRD and ISM band devices Medium to long-range telemetry Software radio 概述
Digital Down Converter with configurable Decimation Filter 参考报价 无资料 无资料 无资料  
DDC is a complex-valued digital down-converter with a configurable number of decimation stages.  The design is ideal for high sample-rate applications and permits a digital input signal to be mixed- down and re-sampled at a lower data rate.  The DDC is suitable for the down-conversion   of   any   digitally   modulated   signal   to   baseband   –   an essential step before digital processing. The DDC features a high-precision 16-bit DDS oscillator for the digital mixing stage.   This oscillator is fully programmable and offers excellent phase and frequency resolution.  The digital mixing stage  is a complex multiplier that allows  the mixing of both real and imaginary (I/Q) inputs.  If only real inputs are required, then the imaginary input (q_in) should be tied low. The output decimation stage features a configurable decimate-by-2N  poly-phase   filter   for   both   I   and   Q   channels.     Each   filter   stage   is   highly optimized to use only 12 multipliers while still achieving 80 dB of stop-band attenuation.   Application Compatible with any digital modulation scheme - e.g. QPSK, BPSK, QAM, WiMAX, WCDMA, COFDM etc. Conversion of IF signals to baseband frequencies for subsequent processing Digital I/Q Demodulators     概述
FIR filter 参考报价 无资料 300 MHz 无资料  
FIR_F is an FIR filter implementation designed for very high sample rate applications.   Organized as a systolic array the filter is modular and fully scalable, permitting the user to specify large order filters without compromising maximum attainable clock-speed.  Mathematically, the filter implements the difference equation: y[n] = h0 x[n] + h1 x[n−1] + ... + hN x[n−N ] In the above equation, the input signal is x[n], the output signal is y[n] and h0 to hN represent the filter coefficients.  The number N is the filter order, the number of filter taps being equal to N+1.   Application General purpose FIR filters with odd or even numbers of taps Filters with arbitrary sets of coefficients Very high-speed filtering applications 概述
N-channel multiplexed FIR filter 参考报价 无资料 500 MHz 无资料  
The IP is an N-channel multiplexed FIR filter designed for high sample rate  applications  where  hardware  resources  are  limited. The main filter core is organized as a scalable systolic array permitting the user to specify large order filters without compromising maximum attainable clock-speed.   Essentially the filter functions as if it were 'N' separate FIR filters.  Each input sample is multiplexed into the filter at a sample rate equal to Fs /N,  where Fs is the sampling frequency of the main filter core.   Likewise, output samples are updated at a frequency of  Fs /N.   The first sample into the filter is aligned by asserting the signal X_VALID high. The signal  Y_VALID_val  is asserted with the first valid output sample. Data samples are advanced in the pipeline on the rising clock-edge of clk when en is active high.  When en is low then all data samples are stalled.  The clock-enable signal may be used to temporarily disable the filter - or possibly to modify the effective sampling frequency of the system clock.  If the clock-enable is not needed it is recommended that this signal be tied high as it will improve overall circuit performance.   Application Dual-channel inputs such as complex valued I/Q in digital communications systems High-speed filtering applications where hardware resources are limited General purpose FIR filters with odd or even numbers of taps 概述
Half-band Nyquist decimation filter 参考报价 无资料 300 MHz 无资料  
The IP is an N-channel multiplexed FIR filter designed for high sample rate  applications  where  hardware  resources  are  limited. The main filter core is organized as a scalable systolic array permitting the user to specify large order filters without compromising maximum attainable clock-speed.   Essentially the filter functions as if it were 'N' separate FIR filters.  Each input sample is multiplexed into the filter at a sample rate equal to Fs /N,  where Fs is the sampling frequency of the main filter core.   Likewise, output samples are updated at a frequency of  Fs /N.   The first sample into the filter is aligned by asserting the signal X_VALID high. The signal  Y_VALID_val  is asserted with the first valid output sample. Data samples are advanced in the pipeline on the rising clock-edge of clk when en is active high.  When en is low then all data samples are stalled.  The clock-enable signal may be used to temporarily disable the filter - or possibly to modify the effective sampling frequency of the system clock.  If the clock-enable is not needed it is recommended that this signal be tied high as it will improve overall circuit performance.   Application Dual-channel inputs such as complex valued I/Q in digital communications systems High-speed filtering applications where hardware resources are limited General purpose FIR filters with odd or even numbers of taps 概述
Digital Video Scaler 参考报价 无资料 250 MHz 无资料  
The IP Core is a studio  quality video scaler capable  of generating interpolated output images from 16 x 16 up to  216  x 216  pixels in resolution.   The architecture permits seamless scaling (either up or down) depending on the chosen scale factor.  Internally, the scaler uses a 24-bit accumulator and a bank of polyphase FIR filters with 16 phases or interpolation points.  All filter coefficients are programmable, allowing the user to define a wide range of filter characteristics. Pixels flow in and out of the video scaler in accordance with the valid-ready pipeline protocol.  Pixels are transferred into the scaler on a rising clock-edge when pixin_val  is high and pixin_rdy is high.  As such, the pipeline protocol allows both input and output interfaces to be stalled independently. The scaler is partitioned into a horizontal scaling module in series with a vertical scaling module . Application Support for the latest generation video formats with resolutions of 4K and above Video scaling for flat panel displays, portable devices, video consoles, video format converters, set-top boxes, digital TV etc. Conversion of all standard and custom video resolutions such as HD720P to HD1080P, XGA to VGA etc.   概述
Bilinear Video Scaling Engine 参考报价 无资料 250 MHz 无资料  
This IP is a very high quality video scaler capable of generating interpolated output images from 16x16 up to 216  x 216  pixels in resolution. The architecture permits seamless scaling (either up or down) depending on the chosen scale factor. Internally, the scaler uses a 24-bit accumulator and a bank of polyphase FIR filters with 16 phases or interpolation points.  All filter coefficients are programmable, allowing the user to define a wide range of filter characteristics. Pixels flow in and out of the scaling engine in accordance with the valid-ready pipeline protocol.As such, the pipeline protocol allows both input and output interfaces to be stalled independently. The scaler is partitioned into a horizontal scaling section in series with avertical scaling section. Application Conversion of popular video formats to any other resolution such as VGA to XGA, SVGA to HD1080 etc. Picture in Picture (PiP) applications High quality 24-bit RGB/YCbCr video scaling     概述
Text Overlay Module 参考报价 无资料 200 MHz 无资料  
The IP Core is a highly versatile On Screen Display (OSD) module that allows text and bitmap graphics to be inserted over RGB video.   The module supports a wide range of text effects and the programming interface is very simple.  Text is written to a 64x32 character buffer which is mapped (via a bitmap ROM) directly to the display. The characters in the buffer are displayed in a 'TEXT BOX' which may be positioned anywhere in the video display area. Bitmaps for each character are stored in a ROM which may be modified to support different font styles or bitmap graphics. Pixels and syncs flow in and out of the overlay module in accordance with the valid-ready pipeline protocol.  Application Window movement in the same manner as a 2D 'BitBlt' Terminal and Console windows Low cost text and graphics applications Digital TV and home-media solutions 概述
微IP 价格 逻辑闸数 工作频率 工艺   评价

 1  2  3  4  5  6  7  8  9  10