商城 > IP 商城

14-Bit 3 MSPS ADC in GSMC110nm 参考报价 322.000 K μm^2 3 MHz 110 nm  
MCR_GS110_ADC14 is compact and low power 14-bit analog-to-digital converter silicon IP. It has 20 single-end input channel selection multiplexer or 10 differential input channels selection. This ADC uses fully differential SAR architecture optimized for low The ADC is designed for high dynamic performance for input frequencies up to Nyquist rate. 概述
300 mA Capless LDO in 130 nm (VLDS0300LS130) 参考报价 无资料 无资料 130 nm  
Power Quencher® Capless LDO (Silicon-proven 130 nm, 300 mA, excellent quiescent current and load transient regulation) The Power Quencher® series of fully-integrated low dropout (LDO) voltage regulators operates with ultra-low levels of power consumption without sacrificing other areas of performance. They achieve a low-noise output voltage and do not require the external output capacitor that is typically needed in an LDO for loop stability and noise reduction. This saves component count, board space and cost, and improves overall system reliability. The Power Quencher® LDO voltage regulator IP cores are optimized for integration into Application Specific Integrated Circuits (ASICs) or Systems-on-a-Chip (SoCs), including radio frequency (RF), wireless, and Internet of Things (IoT) applications. 概述
High Speed CAN Transceiver 参考报价 无资料 1 MHz 无资料  
The MX102 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is primarily intended for high speed applications, up to 1 Mbps, in passenger cars. The device provides differential transmit capability to the bus and differential receive capability to the CAN controller. The MX102 also features a very low current standby mode with remote wake up capability via the bus. 概述
400 mA Buck DC-DC Converter in 110 nm (VBKS0400T110) 参考报价 无资料 无资料 110 nm  
Buck DC-DC Converter (Silicon-proven 110 nm, 400mA, excellent efficiency) The VBKS0400T110 IP core is a Buck DC-DC switching converter that delivers up to 400 mA of load current. It includes voltage, current and clock references, power-on-reset circuitry, overcurrent protection, a temperature sensor and ESD protection. Soft-start circuitry prevents high currents during start-up, and soft-stop circuitry provides a controlled shut-down sequence during a sudden shut down or fault detection. 概述
140 mA Buck DC-DC Converter in 40 nm (VBKS0140T040) 参考报价 无资料 无资料 40 nm  
Buck DC-DC Converter for Integrated PMU (Silicon-proven 40 nm, 140 mA, optimized clocking to eliminate spurious emissions for low system noise) This series of buck DC-DC converters delivers up to 140 mA of load current and features optimized clocking options to eliminate spurious emissions resulting in much lower system noise. This buck DC-DC converter is silicon-proven in a 40 nm process and is a part of our 40 nm integrated power management unit (PMU) IP core series that has been optimized for integration into Application Specific Integrated Circuits (ASICs) or Systems-on-a-Chip (SoCs), including radio frequency (RF), wireless, and narrowband Internet of Things (NB-IoT) applications. 概述
Dual-Channel 12-bit 80 MSPS ADC IP in UMC 65 nm 参考报价 450.000 μm^2 0.8 MHz 65 nm  
ADC X is an ultra-compact and very low power analog-to-digital converter (ADC) IP. The 12-bit 80 MSPS Dual ADC includes an internal custom bandgap voltage reference. It is capable of supplying bias currents to other parallel ADCs. IP architecture is robust and can be ported to other 65 nm processes.The ADC uses fully differential pipeline architecture with custom low-disturbance digital correction technique which allows single supply bus for both digital and analog. 概述
Flexsupply™ Switching Converter in 40 nm (VRDS00XXT040) 参考报价 无资料 无资料 40 nm  
Flexsupply™ Switching Converter (Silicon-proven 40 nm, allows products to work at ultra-low battery levels, no external components needed) Flexsupply™ Buck/Boost DC-DC Converters: This series of buck/boost switched capacitor regulated voltage doubler IP cores allows operation across a wide range of battery voltage levels, without external components. With their low power consumption and integrated, modular design, this series of IP cores supports a broad range of industry applications with improved efficiency and flexibility. 概述
12-Bit 50 MSPS ADC in IBM 180 SOI 参考报价 280.000 μm^2 50 MHz 180 nm  
MICIP_ADC12 is compact and low power 12-bit analog-to-digital converter silicon IP. This ADC uses 1.5b/stage pipelined architecture optimized for low power and small area. 概述
High-Accuracy Bandgap Reference in 40 nm (VBR120T040) 参考报价 无资料 无资料 40 nm  
Bandgap Reference for Integrated PMU (Silicon-proven 40 nm, high-accuracy of < ±1%) This series of fully-integrated high-accuracy bandgap voltage references generates a 1.2 V output voltage and supports an input from 2.8 to 4.2 V. They provide an output voltage accuracy of < ±1%. These bandgap references are silicon-proven in a 40 nm process and are a part of our 40 nm integrated power management unit (PMU) IP core series that has been optimized for integration into Application Specific Integrated Circuits (ASICs) or Systems-on-a-Chip (SoCs), including radio frequency (RF), wireless, and narrowband Internet of Things (NB-IoT) applications. 概述
High Stable Timers IP 参考报价 无资料 0.8 MHz 无资料  
Timers are used for scheduling the different activities within the system. Timers generates interrupt in system and Operating system(OS) Schedules different Timers and maps them to different Interrupt Service Routine (ISR) to start on different interrupts. It can happen before starting a activity or application, OS configures a timers and give control to application to operate. On Interrupt trigger a interrupt, ISR kicks in and passes control back to OS. A Miss Function on this block can make system to mis-behave a lot. These section explains issues with normal timers and benefits of this high stable timers over conventional timers. -The Problem with Current Technology  Timers carry large counters, Registers, clocks pre-scalers and synchronizations and all these are built by Simple Components which do not have any stability.  If the SOC is exposed to different hazards like radiations, sparks or other events. These logics can be corrupted within counters and registers carrying configuration. This may result in corruption in stored configurations or counters or data or control passing by and can make interrupts to be generated fast or slower rate or even stopped. If system gets faster interrupt, then expected will make control to passed back to Operating system(OS) from the application or much before the application actually able to complete the task. This make system to not able to perform the required task. if interrupts generation is slowed down, will keep the OS waiting much longer to get control and application work is finished long back. This can make system to slow down or Hang. -The Solution High Stable Timers from GreenIPCore can sustain across all system un-stability and misbehavior problems. This Timers is strengthening system against any kind of dirty Electromagnetic noise and capable of protecting the System operation without disruption. The Timers is constructed with high stable components. The High Stable Timers shown above will not fail due to any hazardous event. 概述
微IP 价格 逻辑闸数 工作频率 工艺   评价

 1  2  3  4  5  6  7  8  9  10